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Abstract 

A probabilistic approach is described which is able 
to estimate triplet cosine invariants via their second 
representation. The experimental tests on structures 
of different complexity show that triplets with positive 
cosine are estimated with an accuracy better than via 
Cochran's distribution. Furthermore, in favourable 
cases, a large percentage of negative triplets can be 
found. 

1. Introduction 
The triplet relationship 

t~3 = ¢Ph~ -t- ~h2 -t- ¢Ph3 ----- 0 (mod 27r), hi + h2 + h3 = 0 (1) 

is the most widely used phase relationship for solving 
crystal structures. The occurrence of a few 'bad' trip- 
lets [i.e. triplets for which (1) is violated] in the early 
stages of a phase-extension procedure can prevent 
the crystallographer from solving the crystal structure. 
Furthermore, the use of a relatively large number of 
bad triplets in a refinement process can lead to wrong 
results even if the set of starting phases is relatively 
accurate (the structural information is lost under 
refinement). The probability of finding the correct 
solution is enhanced if the bad triplet relationships 
are recognized: then they may be excluded from the 
structure-solving process or suitably used. 

Traditionally, ~3 is estimated by the Cochran 
(1955) formula (denoted by P3 from now on): 

P3~[27rlo(C)] -l exp(C cos t~3) , (2) 

where Io is the modified Bessel function of order zero, 
N 

C = 20"3CrE3/21Eh,Eh2Eh31, °'n = E 27, 
j=l  

Zj is the atomic number of the j th atom of the struc- 
ture, N is the number of atoms in the unit cell. 

Cochran's formula estimates ~3 by exploiting only 
the information contained in the three moduli 
I Eh,I, I Eh21, I Eh,I. The assumption that the information 
contained in all the reciprocal space could be used 
in order to improve Cochran's estimate of ~3 inspired 
a great deal of work. In this view several formulae 
were proposed by various authors: the connections 
of some of them with the present theory are discussed 
in the Appendix.* 

The theory of representations (Giaeovazzo, 
1977a, b; see Hauptman, 1975, 1977, for a related 
concept) gave the authors new insight into the prob- 
lem of recognizing good and bad triplets. We describe 
here some theoretical results arising from such a 
theory and practical tests on several crystal structures. 

2. The estimation of ~3 via its second representation 
In accordance with Giacovazzo (1977b), the second 
representation {~b}2 of the triplet @3 is the collection 
of special quintets 

I]/2 -- {I)3 q- ~k- -  ~k, (3) 
where k is a free vector in the reciprocal space. The 
basis magnitudes of any ~2 are (R = IEI) 

Rh,, Rh 2, Rh 3, Rk 

*The Appendix (a theoretical comparison with previous 
approaches estimating triplets) has been deposited with the British 
Library Lending Division as Supplementary Publication No. SUP 
38848 (3pp.). Copies may be obtained through The Executive 
Secretary, International Union of Crystallography, 5 Abbey 
Square, Chester CH1 2HU, England. 

0108-7673/84/030278-06501.50 O 1984 International Union of Crystallography 
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and the cross magnitudes are 

Rhi±k, Rh2±k, Rh3±k- 

The collection of the basis and cross magnitudes of 
the various quintets @2 is {B}2 , which is called the 
second phasing shell of @3: 

{B}2 = {Rh,, Rh~, Rh~, Rk, Rh,±k, Rh~±k, Rh3±k}- 

Such considerations suggest for P1 and P1 the 
study of the ten-variate probability distribution 

P(Ehl, Eh 2, Eh 3, Ek, Ehl+k, Eh,-k, 
Eh2+k, Eh2-k, Eh3+k, Eh3-k), (4) 

from which the conclusive conditional probability 
distribution 

P(~3110 moduli) (5) 

is obtained. Equations (4) and (5) may be calculated 
by means of techniques described in a recent mono- 
graph (Giacovazzo, 1980). For the sake of brevity we 
do not give here any details of these techniques. 

Since k is a free vector a formula can be found 
which provides the conditional probability distribu- 
tion of ~3 given the basis and cross moduli of any 
set of quintets ~2. We will denote such a probability 
by P~o(~3) in order to emphasize the fact that the 
formula explores reciprocal space by means of a 
ten-node figure. Three nodes (i.e. h~, h2, h3) are fixed 
while k varies: the remaining seven nodes sweep out 
reciprocal space. 

If the space group has symmetry higher than tri- 
clinic, any quintet (3) depends on more than ten 
magnitudes. Indeed, (3) gives rise to m equivalent 
quintets: 

1[12 ~-" ~3 ~ ~0kRi -- ~0kRt, i = l, 2 , . . . ,  m, 

where m is the number of symmetry operators Cj-- 
(Rs, Tj) not related by a centre of symmetry (Rj is the 
rotational part, Tj the translational part of the sym- 
metry operator). In conclusion, any quintet ~2 
depends on, in addition to the basis magnitudes 
Rh,, Rh~, Rh3, Rk, the 0m cross magnitudes 

Rhl+kR I, Rhi-kR I, Rh2+kR I, Rh2-kR ,, Rha+ka 1, gh3-kRi 
Rhl+kR 2, Rhl-kR 2, Rh2+ka2, Rh2-kR 2, Rh3+kR 2, Rh3-kS 2 

Rhl+kRm, Rht-kRm, Rh2+kRm, Rh2-kRm' Rh3+kRm' Rh3-kRm" 
(6) 

In this case we may write 

{B}2 =" {Rhl, Rh 2, Rh 3, Rk, Rhl+kR l, Rh2±kg i, Rh3±kR i, 

i - l , 2 , . . . , m } .  

The conditional probability P(t~3i{B}2 ) now pro- 
vides an estimate for t~ 3 in any space group. Since 
its exact expression is not easy to obtain, we prefer 
to introduce a simple approximation of P(~3[{B}2) 
which may be derived as a proper combination of 

the various ten-variate distributions: 

P(~31Rh,, Rh~, Rh~, Rk, Rh,±ka,, Rh2±kR,, Rh3±ka,). (7) 

All the calculations described in this paper refer 
to such a formula which will be shortly denoted by 
P~0. Of course, k is a free vector in our procedure 
and varies over the asymmetric region of reciprocal 
space. 

3. The estimation of ~3 in the centrosymmetric 
space groups 

In the centrosymmetric space groups P~o(~3) may be 
replaced by P~-o which gives the conditional probabil- 
ity that the triplet is positive. We obtain 

P~'o = ½ +½ tanh G, (8) 
where 

G = C ( I + Q ) ,  

f m# Ak.,IN 
Q : ~ - -  /:l___g_ _ q ,  (9) 

Ak.~ = ek[el,, +kil,(eh~-I<R, + eh~-~)  

+ ea2+kR,(ehi-kR, q- Eha-kR i) 

"4- eh3+kRi(eh,-klR i "31- Eh2_kRt)], 

Bk.i = eh, [ek(eh, +kS, + eh,--kS,) 

"~ Eh2+kRtEh3_kR i ~ Eh2--kRteh3+kRi] 

+ eb2[ek(eh2+kR, + eh2-~,) 

Ehi+kRtEha-kR l + Ehi-kRtEh3+kRi] 

+ eh3[ek(eh3+kR, + eh3-kR,) 

~t- eh 1 +kRieh2_kR ~ "t- eh! _kRtEh2+ldRt] ; 

E=lEI2--1,(eh, eh~eh3+E'~=l /3k,,) is assumed to be 
zero if it is experimentally negative. The prime to the 
summation warns the reader that precautions have to 
be taken in order to avoid duplications in the contri- 
butions (see § 6). 

G may be positive or negative. In particular, if 
G < 0 the triplet is estimated negative. 

The accuracy with which the value of ~3 is esti- 
mated by (8) strongly depends on e k. ThUS, in practice, 
only a subset of reciprocal space (the reflections k 
with large values of e) may be used for estimating ~3. 

4. The estimation of ~b 3 in non-centrosymmetric 
space groups 

COS (~3 is estimated via the yon Mises distribution 

1 
P l o ( ~ 3 ) - - -  exp (G cos ~3), (10) 

27rio(G) 

where G = 2C(1 + Q) and Q is defined by (9). 
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The distribution (10) is unimodal and takes its 
maximum at • = 0 if G > 0, at • = ~r if G < 0. There- 
fore, it is able in principle to estimate with high 
reliability only triplets with phase values around 0 or 
~r. In accordance with the theory, enantiomorph- 
sensitive triplets should present a rather fiat distribu- 
tion (G = 0), so that they cannot be reliably fixed. 
This is the most important limitation of the present 
theory: however, its use may have important applica- 
tions in direct methods, both during the tangent pro- 
cedures and for recognizing the correct solution in 
multisolution approaches (Camalli, Cascarano, 
Giacovazzo, Spagna & Viterbo, 1984). 

It is expected that the theory will be more useful 
for centrosymmetric than for non-centrosymmetric 
space groups. Indeed, the formulas depend on the e 
factors: according to Wilson's distributions, (lel) is 
0.968 for centrosymmetric crystal structures and 0.736 
for non-centrosymmetric ones. 

The larger dispersion of the e factors around zero 
for centrosymmetric space groups favours larger con- 
tributions to the centrosymmetric formula. 

5. The theory of representations and the quadrupoles 

From the phasing magnitudes of the second rep- 
resentation a number of quadrupoles may be con- 
structed, each contributing to the estimation of @3. 
For example, from the magnitudes on the ith line of 
the matrix (6) the following six quadrupoles arise (of 
type I): 

. -- ~ h  3 -- ~ h  t +kS l -- ~ h 2 _ k a  1 

I ~h l  "~ ~h2 "~ ~h3 f 
--q~h~ + ¢PkR, + ¢Ph~-kR, 

--~Ph2 -- ~ k a i  "~- ~h2+kS  i 

- - ~ h  3 -- ~ h l _ k S  i -- ~Oh2+kRi 

{ ~h l  "~" @h2 "~- ~0h3 { 

--~Ph~ + ~i,R, + ¢Ph~-itlt~ 

- - ~ h  2 --  (Phl_kR ~ -- ~0h3+kRi 

- - ~ h  3 -- (~kRi + ~h3+kR l 

~h  I "]- ~ h  2 + ~0h3 

- - ~ h l  -- ~kR,  q- ~h t  +klRj 

- - ~ h  2 -- ~0hl +k.R 1 -- ~h3_kR ~ 

- - ~ h  3 "~- (PkRt "1- ~h3_kR I 

~ h  I "~ ~0h2 + ~h3 

--(Phi -- ~h2+kR 1 -- ~0h3_kt I 

--~0h2 -- (PkRt "4" ~h2+kR i 

-- ~ h  3 "[- ~kS l  "[" ~0h3_kR t 

~h  I "~ (l~h2 "~ ~ h  3 

- - ~ h !  a.. ~Dh2_kR~ __ ~h3_kR i 

- - ~ h  2 "l" ~k.R~ "31- (Ph2-kR l 

--~0h3 -- ~kS i  "JI- ~h3+kR t. 

(ll) 

Each of the above quadrupoles gives a well recog- 
nizable contribution to (8). For example, 

Ek Ehl +kR~Eh2-kRp Ek Eht +kRiEh3-kRi ,  

E k E h l - k R i E h 2 + k R p  • . . 

are, in order, the contributions to A arising from the 
quadrupoles (11). Varying Ri over the m symmetry 
operators and k over the asymmetric region of the 
reciprocal space leads, by a probabilistic approach, 
to our formulas (8) and (10). 

The question now is if (11) are or are not the only 
quadrupoles exploitable by the second representa- 

tion. The form 

- - ~ h  I - -  ~0kR ~ ~ ~ h l  +kR i (12) 
--~h2 + rPkRj + ~h2-kR~ 

- - ~ h  3 - -  ~(h!  +kR,)Rp - -  ~ (h2 -kRj )Rs  

is a quadrupole too (type II), provided k, Rp and R~ 
are suitable matrices for which 

hlRp +h2R, + h 3  +kRiRp -kRjR~ = 0. (13) 

The quadrupole (12) is structurally different from 
quadrupoles (11) because: (a) it involves cross terms 
from two lines of the matrix (6); (b) the sum of the 
four triplets in (12) is no longer strictly equal to zero. 
Indeed, (12) may be written as 

l h I "~- (i~h2 "3 t" ~ h  3 

- - ~ h  I - -  ~ k  "[" ~ h l + k R ,  + 2rrkT, 

--~0h2 -t- ~ k  -~- ~h2--kR)  - -  2 IrkTj 

- -  ~ h  3 - -  ~ h  1 +kRi - -  ~ h 2 _ k R  j 

+2~r[(h~ +kRi)Tp +(h2-  kRj)T~], 

from which the sum A of the four triplets is easily 
found: 

d = 2~r[h,Tp +h2Ts + k ( T , - T j  +kR,Tp - kRjTs)]. 

Examples of this kind of quadrupole were given 
by Viterbo & Woolfson (1973). These authors called 
'consistent' the quadrupoles for which d = 0, the 
others inconsistent. 

In the symmorphic space groups inconsistent quad- 
rupoles cannot exist, but quadrupoles with terms lying 
in two lines of the matrix (6) do occur. 

The above considerations suggest the following. 
(a) The algebraic theory of representations is able 

to take into account quadrupoles of types I and II 
(or consistent and inconsistent quadrupoles). The 
contributions of the various quadrupoles to (8) and 
(10) are organized per quintets. This seems to intro- 
duce an efficient exploitation of their properties (see 
§6). 

(b) Our approach is applied in the present paper 
only to quadrupoles I. The reasons for this limitation 
are only practical: the quadrupoles II only occur 
when condition (13) is verified (special relations 
between k and the hi's are required), so their percen- 
tage is usually small, especially for space groups of 
low symmetry, and their search is time consuming. 
Incidentally, their contribution may be relevant for 
making easier the direct solution of some crystal 
structures. We defer to a further paper the task of 
evaluating quadrupoles II and their relevance for 
structure solution. 
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Table 1. Abbreviations, references, space groups and formulas for the sixteen test structures 

N is the number of  non-hydrogen atoms in the unit cell. 

KENNA 
GRA4 
EVIT 
PG205 
QUINO 
PMMI 
REGOL 
ROSA 
BCD 
HEPTA 
FACTS 
ERGO 
AZET 
APAPA 
DIOLE 
TURI0 

References Space group 

Shakked & Kennard (1977) Pi  
York (private communication) P1 
Schenk, Kops, van der Putten & Bode (1978) P21/c 
York (private communication) P2Jn 
Wallwork & Powell (1980) R3 
Goldberg (1975) Pnma 
Goldberg & Rezmovitz (1978) Pbca 
Wong (1978) Pbca 
York (private communication) P21 
Beurskens, Beurskens & van den Hark (1976) P21 
York (private communication) P212~21 
Hull, Leban, Main, White & Woolfson (1976) ' P21212t 
Colens, Declercq, Germain, Putzeys & Van Meerssche (1974) Pca2~ 
Suck, Manor & Saenger (1976) P41212 
York (private communication) I3,2d 
York (private communication) P6322 

Formula Z N 

C3oH37NO 5 2 72 
C3oH22N204 2 72 
C21 H3oO2 4 92 
CI9H22N20 8 176 
C602 54 432 
C17H240 7 8 192 
C2oH23NO6 8 216 
C21HI9NO 8 184 
(C6H 1oO5)7.12H20 2 178 
C13H1809 4 88 
C45H57N7OI2 4 256 
C28H440 8 232 
C2tHI6CINO 8 192 
C3oHBsN15OI6P 2 8 504 
CloHI802 16 192 
C15H240 2 12 204 

6. Experimental results 

For our tests a computer program has been imple- 
mented which can estimate triple-phase relationships 
in all the space groups according to P3 and Plo. The 
program seeks triplets among the largest 400 I El's 
and stores the 3000 most reliable ones. The running 
vector k is allowed to vary over a limited number of 
reflections (over the I El's larger than a given threshold 
Et). For convenience the experimental G values are 
rescaled on C values. 

Throughout the procedure checks are made in 
order to avoid duplications of the contributions to 
Plo [we emphasized that by inserting the prime to the 
summation symbol in (9)] and the use of special 
quintets [for which (8) and (10) do not hold]. Thus, 
a vector kRj is not used in (7) if one of the following 
relations occurs. 

kRj = +kRi, where klRi has been previously used. 
(hi + kRj) is symmetry equivalent to one of the hv's 

or to k. 
IEh,~ka, I- lEd--- E,. Such a condition is introduced 

because the running vector k will become in different 
moments both k and -hi  ~:kRj, giving rise to two 
quintets providing identical contributions to (8) and 
(10). By means of the above condition we chose one 
of them. 

The reliability of the P3 and P~0 formulas were 
tested on known structures of different complexity. 
Table 1 shows their references and the most relevant 
features. 

In Table 2 we give for QUINO and for various 
values of ARG the number of triplet relationships 
(nr) having the argument of the hyperbolic tangent 
larger than ARG. According to P3 all the triplets are 
always estimated positive, according to Plo some of 
them are estimated negative. The number of wrongly 
estimated triplets (nw) is given in parentheses for each 
hr. In practice, in Table 2 the triplet relationships are 
ranked in decreasing order of reliability according to 
P3 and Pio. The following may be observed. 

Table 2. QUINO: number of triplet relationships (nr) 
and number of wrongly estimated triplet relationships 

(nw) according to P3 and 1"1o 

The running vector k is allowed to vary on the largest 150 IEl's. 

Positive Negative 
estimated estimated 

triplets triplets 
ARG P3 Pio Plo 

(nr) (nw) (nr) (nw) (nr) (nw) 
0.0 2824 (279) 176 (29) 
0-8 3000 (426) 2148 (53) 12 (0) 
1.4 935 (63) 1258 (5) 2 (0) 
2.0 325 (9) 583 (1) 
2-4 180 (1) 312 (0) 
3.4 50 (1) 48 (0) 
5.0 l0 (0) 2 (0) 

(a) According to / '3  the first error occurs at 33 in 
the list; according to P~o the first error occurs at 577 
in the list. There are 63 errors among the most reliable 
935 triplets estimated positive by P3 and only 5 errors 
among the most reliable 1258 triplets estimated posi- 
tive by P~o. Thus, positive triplets are selected with 
much more effectiveness by P~o than by P3. 

(b) A relevant number of triplets is estimated nega- 
tive by P~o and a large percentage of them is really 
negative. The first error in the list of the negative 
triplets is the 33rd relationship. 

It would take too much space to give a table such 
as 2 for each crystal structure; thus, for the sake of 
brevity, we collect in Table 3 the most useful figures 
concerning our tests on centrosymmetric structures. 
For each crystal structure the running vector k is 
allowed to vary over the 70, 100, 150 largest I El's in 
order to check the influence of the allowed ranges on 
the accuracy of the formula. For each range: 

(a) the triplets are ranked in decreasing order of 
reliability according to P~o and P3; in the table, the 
order number (nfe) of the first error in the lists is 
given. The entry for P3 is given in parentheses; 
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Table 3. Useful figures concerning the tests on 
centrosymmetric structures 

P~o is used by al lowing the running vector  k to vary over  the largest 
70, 100, 150 IEl's. See text for  the meaning o f  the symbols.  

Table 4. Useful figures concerning the tests on non- 
centrosymmetric structures 

P~o is used by allowing the running vector  k to vary  over  the largest 
70, 100, 150 IEl's. See text for  the meaning o f  the symbols.  

Positive est imated Negat ive est imated First 100 First 100 
triplets triplets posit ive positive Negative 
P~o (P3) es t imated est imated est imated 

(rife) ( nr ) ( n ) triplets triplets triplets 

KENNA 1634 (555) 190 (31) Pio (P3) Plo (/)3) 
1714 198 (34) <1~%1> necos nest ([~%1) 
1682 198 (30) BCD 38 (45) 4 (9) 5 94 

GRA4 1761 (831) 36 (16) 36 2 8 118 
1981 38 (17) 37 4 11 85 
2101 40 (17) HEPTA 20 (24) 0 (1) 0 - -  

EVIT 1501 (157) 219 (42) 20 0 0 - -  
1617 225 (35) 21 0 0 - -  
1589 226 (29) FACTS 48 (56) 11 (15) 12 95 

PG205 135 (77) 239 (105) 47 11 18 103 
155 234 (96) 48 12 24 109 
180 213 (81) ERGO 38 (46) 7 (10) 34 98 

QUINO 478 (33) 239 (50) 37 6 34 90 
521 233 (45) 36 7 35 91 
577 176 (29) AZET 30 (37) 2 (6) 103 97 

PMMI 1418 (289) 191 (45) 32 3 108 103 
1307 187 (41) 30 2 78 107 
1296 171 (23) APAPA 38 (51) 5 (14) 3 77 

REGOL 765 (66) 221 (40) 41 7 4 96 
924 196 (33) 39 7 2 73 
754 179 (26) DIOLE 41 (57) 3 (15) 0 - -  

ROSA 29 (24) 70 (31) 41 3 0 - -  
31 41 (23) 42 3 0 - -  
29 20 (11) TURI0 37 (42) 7 (9) 64 109 

40 6 42 112 
36 5 12 124 

(b) the total number (nr) of the triplets estimated 
negative by P~o is given together with the number of 
errors ne (in parentheses). 

Table 3 confirms the trend of Table 2. Even for 
ROSA, where Plo and P3 seem to rank the positive 
triplets with the same accuracy, P~o is really more 
effective. Indeed, a complete view of the experimental 
results would show, for example, that among the 250 
most reliable triplets estimated positive, there are 31 
errors if estimated by P3, and only 10 errors if esti- 
mated by P~o. 

Table 4 collects some useful figures concerning our 
tests for non-centrosymmetric structures. Again, the 
running vector k is allowed to vary over the 70, 100, 
150 largest I El's. For each crystal structure and for 
each range Table 4 shows: 

(a) the average values (] ~31) observed for the most 
reliable 100 triplet relationships estimated positive 
according to P,o (to/)3 in parentheses); 

(b) the number of triplets (necos) with negative 
cosine among the most reliable 100 triplets estimated 
positive by P~o (by/)3 in parentheses); 

(c) the number (nest) of triplets whose cosine is 
estimated negative by Pro and the observed average 
value <l ~3I)- 

A short analysis of Table 4 shows that P~o is more 
effective than/)3 for selecting sets of triplets with q~3 
closely distributed about the value of zero. Further- 
more, /)1o often selects a number of triplets with ~3 
distributed far from zero: thus they can be eliminated 

Table 5. Useful figures concerning the application of  
P~o and MDKS formulas to the five non-centrosym- 

metric structures 

BCD 
HEPTA 
FACTS 
ERGO 
AZET 

The  meanings  o f  the symbols  are the same as in Table  4. 

First 100 First 100 
positive positive 

est imated est imated 
triplets triplets 

Plo Plo 
( MDKS)  ( MDKS)  

(1~31> necos 
38 (47) 4 (16) 
20 (25) 0 (4) 
48 (41) I1 (11) 
38 (51) 7 (16) 
30 (24) 2 (l) 

Negative 
est imated 

triplets 
Pio Pio 

(MDKS)  (MDKS)  
nest <1~31> 

5 (632) 94 (64) 
0 (381) - -  (43) 

12 (665) 95 (61) 
34 (597) 98 (62) 

103 (529) 97 (68) 

from the tangent formula procedures. For the cases 
in which negative triplets are not found by P~o it may 
be shown that the negative triplets are in large part 
subsets of the sets characterized by small positive 
values of G. For example, for DIOLE, of the 460 
triplets having G<-0.4 according to P~o, 246 have 
negative cosine. 

An important practical conclusion can be drawn 
from Tables 2-4. The effectiveness of the method does 
not critically depend on the range within which the 
running vector k is allowed to vary. Thus, a short 
range may be chosen for practical application without 
relevant damage. Only a few minutes of computing 
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time (4-7) are needed to estimate 3000 triplets selected 
.by P~o on an IBM 370/158 machine when k is allowed 
to vary over the largest 70 I El's. 

7. Conclusions 

The illustrative examples computed by (8) and (10) 
indicate that these formulas can provide more useful 
phase information than /'3. The information is of 
varied sort. 

The triplets estimated positive by P~o, ranked in a 
new order of accuracy, define a new convergence map 
and can actively be used in the tangent procedures. 
It should also be stressed that the integration of our 
formulas with the random approaches of phases 
(Declercq, Germain & Woolfson, 1979) is very easy 
and can facilitate the convergence from random 
phases to the correct solution. 

The triplets whose cosines are estimated negative 
by P~o often are not sufficiently accurate to be actively 
used in tangent procedures. However, they can be 
successfully exploited as a powerful figure of merit 
for finding out the correct solution in multisolution 
procedures (Camalli et al., 1984). We stress the point 
that such a figure of merit is statistically independent 
of that using negative quartets. 
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Abstract 

The problem of calculating the two-wave X-ray field 
on the basis of the Takagi-Taupin equations is dis- 
cussed for the general case of curved lattice planes. 
A two-dimensional integral equation which incorpor- 
ates the nature of the incoming radiation, the form 
of the crystal/vacuum boundary, and the curvature 
of the structure, is deduced. Analytical solutions for 
the symmetrical Laue case with incoming plane waves 
are obtained directly for perfect crystals by means of 
iteration. The same method permits a simple deriva- 
tion of the narrow-wave Laue and Bragg cases. Modu- 
lated wave fronts are discussed, and it is shown that 
a cut-off in the width of an incoming plane wave 
leads to lateral oscillations which are superimposed 
on the Pendelliisung fringes. Bragg and Laue shadow 
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fields are obtained. The influence of a non-zero kernel 
is discussed and a numerical procedure for calculat- 
ing wave amplitudes in curved crystals is presented. 

1. Introduction 

One important problem in the theory of X-ray diffrac- 
tion is to describe wave propagation in general three- 
dimensional structures which are not crystalline in 
the traditional sense. It is well known that the Takagi- 
Taupin method (Takagi, 1969; Taupin, 1964) permits 
the dynamical X-ray wave-field in both perfect and 
slightly imperfect crystals to be calculated. A more 
general way of handling the same problem for statisti- 
cally distributed defects has recently been put forward 
by Kato (1980). A variety of situations exists, however, 
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